Application of a Composite Model in the Analysis of Creep Deformation at Low and Intermediate Temperatures

Author:

Yang Xinjun1,Ling Xiang2

Affiliation:

1. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China e-mail

2. Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China

Abstract

The creep behaviors of TA2 and R60702 at low and intermediate temperature were presented and discussed in this paper. Experimental results indicated that an apparent threshold stress was exhibited in the creep deformation of R60702. Meanwhile, the primary creep phase was found as the main pattern in the room temperature creep behavior of TA2. Compared with the exponential law, the power law has been proved to be a proper constitutive model in the description of primary creep phase. It also showed that θ projection method had its significant advantage in the evaluation of accelerated creep stage. Thus, a composite model which combined power law with θ projection method was applied in the creep curves evaluation at low and intermediate temperature. Based on the multiaxial creep deformation results, the model was modified and discussed. A linear relationship existed between composite model parameters and applied load. Finally, the creep life of TA2 and R60702 could be accurately predicted by the composite model, and it is suitable for the application in low and intermediate temperature creep life analysis.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3