Optimizing Separate Exhaust Turbofans for Cruise Specific Fuel Consumption

Author:

Khalid Syed J.1

Affiliation:

1. Gas Turbine Systems Solutions, LLC, Palm Beach Gardens, FL 33418 e-mail:

Abstract

Cruise specific fuel consumption (SFC) of turbofan engines is a key metric for increasing airline profitability and for reducing CO2 emissions. Although increasing design bypass ratio (BPR) of separate exhaust turbofan configurations improves cruise SFC, further improvements can be obtained with online control actuated variable geometry modulations of bypass nozzle throat area, core nozzle throat area, and compressor variable vanes (CVV/CVG). The scope of this paper is to show only the benefits possible, and the process used in determining those benefits, and not to suggest any particular control algorithm for searching the best combination of the control effectors. A parametric cycle study indicated that the effector modulations could increase the cruise BPR, core efficiency, transmission efficiency, propulsive efficiency, and ideal velocity ratio resulting in a cruise SFC improvement of as much as 2.6% depending upon the engine configuration. The changes in these metrics with control effector variations will be presented. Scheduling of CVV is already possible in legacy digital controls; perturbation to this schedule and modulation of nozzle areas should be explored in light of the low bandwidth requirements at steady-state cruise conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference20 articles.

1. Practical Bypass Mixing Schemes for Fan Jet Aero Engines;Aeronaut. Q.,1966

2. Aerothermodynamic Benefits of Mixed Exhaust Turbofans,2016

3. GasTurb 12 Software,2015

4. Gas Turbine Aerothermodynamics and Performance Calculations,2014

5. Performance Enhancement of Subsonic Turbofans,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Performance of Variable-Geometry Ducted E-Fans;Journal of Engineering for Gas Turbines and Power;2024-08-21

2. Effect of nozzle exit area on the performance of a turbojet engine;Aerospace Science and Technology;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3