Effect of Spray-Wall Interaction on Thermoacoustic Instability Prediction by Flame Transfer Function and the Convective Time Delay Method

Author:

Meng Sheng1,Zhang Man1

Affiliation:

1. AECC Commercial Aircraft Engine CO., Ltd., Shanghai 200241, China

Abstract

Abstract This study numerically investigates the effect of spray-wall interactions on thermoacoustic instability prediction. The large-eddy simulations (LES)-based flame transfer function (FTF) and the convective time delay methods are used by combining the Helmholtz acoustic solver to predict a single spray flame under the so-called slip and film spray-wall conditions. It is found that considering more realistic film liquid and a wall surface interaction model achieves a more accurate phase lag in both of the time lag evaluations compared to the experimental results. Additionally, the results show that a new time delay exists between the liquid film fluctuation and the unsteady heat release, which explains the larger phase value in the film spray-wall condition than in the slip condition. Moreover, the prediction capability of the FTF framework and the convective time delay methodology in the linear regime is also presented. In general, the instability frequency differences predicted using the FTF framework under the film condition are less than 10 Hz compared with the experimental data. However, an underestimation of the numerical gain value leads to requiring a change in the forcing position and an improvement in the numerical models. Due to the ambiguous definition of the gain value in the convective time delay method, this approach leads to arbitrary and uncertain thermoacoustic instability predictions.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The self-excited thermoacoustic instability behavior of a premixed hedge combustor with an elbow-connection or T-shape supply system;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3