Affiliation:
1. Texas A&M University, College Station, TX 77843
2. University of Illinois, Urbana, IL 61801
Abstract
An induction electrohydrodynamic (EHD) pump in an axisymmetric, vertical configuration is studied theoretically. The model includes the effect of entrance conditions, buoyancy effects, secondary flow, and Joule heating. Primarily the forward (cooled wall) and to a lesser extent the backward (heated wall) modes are investigated. A finite difference technique is used to obtain the numerical solutions. A set of these solutions is presented to show the influence of the controlling factors of operating an induction EHD pump. The results indicate that the entrance temperature profile plays an important role in the operation of the pump because steeper profiles produce higher velocities. The pump must be operated at an optimum frequency, wavelength, and electric conductivity level.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献