Prediction of Conjugate Heat Transfer in a Solid–Liquid System: Inclusion of Buoyancy and Surface Tension Forces in the Liquid Phase

Author:

Keller J. R.1,Bergman T. L.1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712

Abstract

Numerical predictions have been obtained for steady-state conjugate heat transfer in an open rectangular cavity. For the geometry considered, fluid motion is driven by augmenting buoyancy and surface tension forces. Predictions of the steady-state solid volume fraction and various solid thicknesses were obtained for a high Prandtl number fluid characterized by various Rayleigh and Marangoni (Ma) numbers. Due to numerical difficulties associated with large surface tension effects, a limited range of Ma was investigated (Ma≤250). The predictions show that surface tension induced flow can affect the solid geometry and, ultimately, freezing or melting rates. Specifically, the solid–liquid interface shape is altered, the steady-state solid volume fraction is decreased, and the solid thickness at the top surface is smaller, compared to the pure buoyancy-driven case. The dimensionless solid volume fraction and solid thicknesses are related to the governing dimensionless parameters of the problem. Finally, predictions are made for high Marangoni number flows (Ma>>250) to demonstrate the potential governing influence of surface tension effects in phase-change systems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3