A Review on the Use of Chemicals as Steam Additives for Thermal Oil Recovery Applications

Author:

Du Xuan1,Xi Changfeng1,Shi Lanxiang1,Wang Bojun1,Qi Zongyao1,Liu Tong1,Zhou You1,Lee Jungin2,Babadagli Tayfun2,Li Huazhou2

Affiliation:

1. State Key Lab of Enhanced Oil Recovery, PetroChina Exploration & Development, Research Institute, Beijing 100083, China

2. School of Mining & Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada

Abstract

AbstractWe summarize the major recovery mechanisms of both steam-based recovery process and steam-chemical-based recovery process. Next, we review the previous lab-scale/field-scale studies examining the applications of surfactants, alkali, and novel chemicals in the steam-based oil recovery process. Among the different surfactants studied, alpha-olefin sulfonate (AOS) and linear toluene sulfonate are the recommended chemicals for their foam control/detergency effect. In particular, AOS was observed to perform especially well in residual oil saturation (ROS) reduction and sweep efficiency improvement when being co-injected with alkali. Application of organic alkali (alone or with a co-surfactant) has also drawn wide attention recently, but its efficacy in the field requires further investigation and the consumption of alkali by sands/clay is often an inevitable issue and, therefore, how to control the alkali loss requires further investigation. Novel chemical additives tested in the past five years include fatty acids (such as tail oil acid, TOA-Na+), biodiesel (o/w emulsion), along with other types of chemical additives including switchable hydrophilicity tertiary amines, chelating agents, deep eutectic solvents, graphite and SiO2 particles, ionic liquids, and urea. High thermal stability of some of the novel chemicals and their potential in increasing displacement efficiency and ROS reduction efficiency in the lab studies require further investigation for their optimized application in the field settings to minimize the use of steam while improving the recovery effectively.

Funder

China National Petroleum Corporation

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference67 articles.

1. Thermal Recovery Processes

2. 2014 Worldwide EOR Survey;Koottungal;Oil Gas J.,2014

3. 2014 Worldwide EOR Survey;Koottungal;Oil Gas J.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical-steam coinjection;Sustainable In-Situ Heavy Oil and Bitumen Recovery;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3