Long Short-Term Memory-Based Cutting Depth Monitoring System for End Milling Operation

Author:

Vaishnav Shubham1,Desai K. A.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342 037, Rajasthan, India

Abstract

Abstract The technologies related to manufacturing processes monitoring, optimization, and control are becoming prevalent to achieve autonomous operations in Smart Manufacturing. The present work establishes an edge-level system based on the long short-term memory (LSTM) model for monitoring significant variations of cutting depths during end milling of near-net-shaped components. The proposed system consists of a trained LSTM model that decodes force data to identify cutting depths and an edge-level interface for displaying abnormal changes to the operator. The LSTM model development requires considerable labeled data consisting of cutting force sequences and corresponding depth classes generated using machining experiments. The present work proposes to develop the LSTM model using synthetic datasets generated using the mechanistic force model to minimize experimental efforts. The optimum configuration was derived by investigating the effect of network parameters and adaptive learning methods. The performance of an optimal network was substantiated by conducting tests using previously unseen synthetic datasets derived from the mechanistic model. The optimal network architecture was integrated with a dynamometer and an edge-level system to capture end milling force data and display cutting depth information. A set of end milling experiments are carried over a range of parameters to examine the efficacy of the proposed approach in estimating cutting depth deviations. It has been demonstrated that the approach can be effectively used as an edge-level system to capture significant cutting depth variations during the end milling and alert machine operators.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3