Thermal Aspects of Uranium Carbide and Uranium Dicarbide Fuels in Supercritical Water-Cooled Nuclear Reactors

Author:

Grande Lisa1,Villamere Bryan1,Allison Leyland1,Mikhael Sally1,Rodriguez-Prado Adrianexy1,Pioro Igor1

Affiliation:

1. Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4, Canada

Abstract

Supercritical water-cooled nuclear reactors (SCWRs) are a Generation IV reactor concept. SCWRs will use a light-water coolant at operating parameters set above the critical point of water (22.1 MPa and 374°C). One reason for moving from current Nuclear Power Plant (NPP) designs to SCW NPP designs is to increase the thermal efficiency. The thermal efficiency of existing NPPs is between 30% and 35% compared with 45% and 50% of supercritical water (SCW) NPPs. Another benefit of SCWRs is the use of a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc. can be eliminated. Canada is in the process of conceptualizing a pressure tube (PT) type SCWR. This concept refers to a 1200-MWel PT-type reactor. Coolant operating parameters are as follows: a pressure of 25 MPa, a channel inlet temperature of 350°C, and an outlet temperature of 625°C. The sheath material and nuclear fuel must be able to withstand these extreme conditions. In general, the primary choice for the sheath is a zirconium alloy and the fuel is an enriched uranium dioxide (UO2). The sheath-temperature design limit is 850°C, and the industry accepted limit for the fuel centerline temperature is 1850°C. Previous studies have shown that the maximum fuel centerline temperature of a UO2 pellet might exceed this industry accepted limit at SCWR conditions. Therefore, alternative fuels with higher thermal conductivities need to be investigated for SCWR use. Uranium carbide (UC), uranium nitride (UN), and uranium dicarbide (UC2) are excellent fuel choices as they all have higher thermal conductivities compared with conventional nuclear fuels such as UO2, mixed oxides (MOX), and thoria (ThO2). Inconel-600 has been selected as the sheath material due its high corrosion resistance and high yield strength in aggressive supercritical water (SCW) at high-temperatures. This paper presents the thermalhydraulics calculations of a generic PT-type SCWR fuel channel with a 43-element Inconel-600 bundle with UC and UC2 fuels. The bulk-fluid, sheath and fuel centerline temperature profiles, together with a heat transfer coefficient profile, were calculated for a generic PT-type SCWR fuel-bundle string. Fuel bundles with UC and UC2 fuels with various axial heat flux profiles (AHFPs) are acceptable since they do not exceed the sheath-temperature design limit of 850°C, and the industry accepted limit for the fuel centerline temperature of 1850°C. The most desirable case in terms of the lowest fuel centerline temperature is the UC fuel with the upstream-skewed cosine AHFP. In this case, the fuel centerline temperature does not exceed even the sheath-temperature design limit of 850°C.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference14 articles.

1. Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications

2. Supercritical Water-Cooled NPPs With Co-Generation of Hydrogen: General Layout and Thermodynamic-Cycles Options;Naidin

3. Thermal-Design Options for Pressure-Channel SCWRs With Co-Generation of Hydrogen;Naidin;ASME J. Eng. Gas Turbines Power

4. Conceptual Fuel Channel Designs for CANDU-SCWR;Chow;Nuclear Engineering and Technology: An International Journal of the Korean Nuclear Society

5. SCW Pressure Channel Nuclear Reactor, Some Design Features;Pioro;JSME J. of Power and Energy Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3