Experimental Investigation of the Combustion Behavior of Single-Nozzle Liquid-FLOX®-Based Burners on an Atmospheric Test Rig

Author:

Izadi Saeed1,Zanger Jan1,Kislat Oliver1,Enderle Benedict1,Grimm Felix1,Kutne Peter1,Aigner Manfred1

Affiliation:

1. German Aerospace Center (DLR), Institute of Combustion Technology, Stuttgart D-70569, Germany

Abstract

Abstract As an alternative to the commonly used swirl burners in microgas turbines (MGT), the FLOX®-based combustion concept promises great potential for the nitric oxide emission reduction and increased fuel flexibility. Despite having to deal with a new set of challenges while utilizing liquid fuel in the burner, first steps are taken to gain more information on the influencing operational parameters. In this regard, a FLOX®-based liquid fuel burner is developed to fit into a newly designed combustor for the Capstone C30 MGT. The C30 combustor operates with three burners arranged tangentially to an annular combustion chamber and provides a total thermal power of 115 kW. In this work, operational properties of merely one of the three C30 liquid fuel burners are investigated and the rest of the two burners are emulated in form of hot cross-flow. As for the liquid burners, the experiments are conducted with three geometrically different single-nozzle burners at atmospheric pressure. The cross-flow is realized by utilizing a 20–nozzle FLOX®-based natural gas combustor. Measurements include visualization of the reaction zone and analysis of the exhaust gas emissions. By detecting the hydroxyl radical chemiluminescence (OH*-CL) emissions, the position of the heat release zone within the combustion chamber is attained. Correspondingly, the flame height above burner and the flame length are calculated. The investigated design parameters include air preheat temperature up to 733 K, equivalence ratio, burner geometry, and thermal power. Through variation of thermal power, the effect of liquid fuel preparation, i.e., atomization, evaporation, and mixing on combustion properties and exhaust gas emissions are examined. The results show that the burners with the medium diameter consistently performed remarkably at different flame temperatures and thermal powers. The lowest NOx and CO emissions for the medium diameter burner lied between 5 to 7 ppm and 8 to 10 ppm, respectively.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference25 articles.

1. Flameless Oxidation to Reduce Thermal NO-Formation,1997

2. FLOX® Combustion at High Power Density and High Flame Temperatures;ASME J. Eng. Gas Turbines Power,2010

3. Severin, M., 2019, “ Analyse Der Flammenstabilisierung Intensiv Mischender Jetflammen Für Gasturbinenbrennkammern,” Ph.D. dissertation, Institute of Combustion Technology for Aerospace Engineering (IVLR) University of Stuttgart, Stuttgart, Germany.10.18419/opus-10552

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3