Seven-Point Solar Tracking Control for a Fiber-Optic Daylighting System

Author:

Ahmed Rahate1,Kim Yeongmin1,Zeeshan 1,Mehmood Muhammad Uzair1,Han Hyun Joo2,Chun Wongee1,Lim Sang Hoon1

Affiliation:

1. Department of Nuclear and Energy Engineering, Jeju National University, Jeju 63243, South Korea

2. Department of Architectural Engineering, Jeju National University, Jeju 63243, South Korea

Abstract

Abstract A strategy for precise solar tracking has been developed using feedback signals from seven photosensors in conjunction with the operation of an active daylighting system. The tracking system was composed of a microcontroller, two stepper motors, photosensors, a grooves-in Fresnel lens concentrator, and a glass optical fiber cable. A robust control was implemented using cadmium sulfide (CdS) sensors to track the sun’s path precisely from sunrise to sunset. To avoid the cloud effect, two separate sensors were installed apart from the main tracking sensors. The control system was allowed to track the sun’s position if clouds covered the sky continuously for less than approximately 70 min. To analyze the performance of the solar tracker for daylighting applications, a series of experiments were performed in different weather conditions where the accuracy and effectiveness of the present solar tracking control were confirmed.

Funder

National Research Foundation

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3