Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing System

Author:

Nicoletti Rodrigo1,Santos Ilmar Ferreira2

Affiliation:

1. Ford Motor Co., Complexo Industrial Ford Nordeste, Camacari 42810-900, Brazil

2. Department of Mechanical Engineering, Technical University of Denmark, Lyngby 2800, Denmark

Abstract

In the present paper, the dynamic response of a rotor supported by an active lubricated tilting-pad bearing is investigated in the frequency domain. The theoretical part of the investigation is based on a mathematical model obtained by means of rigid body dynamics. The oil film forces are inserted into the model by using two different approaches: (a) linearized active oil film forces and the assumption that the hydrodynamic forces and the active hydraulic forces can be decoupled, and (b) equivalent dynamic coefficients of the active oil film and the solution of the modified Reynolds equation for the active lubrication. The second approach, based on the equivalent dynamic coefficients, leads to more accurate results because it includes the frequency dependence of the active hydraulic forces. Theoretical and experimental results reveal the feasibility of reducing resonance peaks by using the active lubricated tilting-pad bearing. By applying a simple proportional controller, it is possible to reach 30% reduction of the resonance peak associated with the first rigid body mode shape of the system. One of the most important consequences of such a vibration reduction in rotating machines is the feasibility of increasing their operational range by attenuating resonance peaks and reducing vibration problems.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3