Imaging Fatigue Damage Precursors Based on Nonlinear Phased Array Ultrasonic Measurements of Diffuse Field

Author:

Bunget Gheorghe1,Rogers James1,Bunget Cristina J.2,Lavitz Analeia E.3,Henley Stanley42

Affiliation:

1. Engineering Physics Department, Murray State University, Institute of Engineering, Murray, KY 42071

2. Metalurgical Acoustic Research Systems, LLC, Murray, KY 42071

3. Smith College, Northampton, MA 01063

4. Engineering Physics Department, Murray State University, Institute of Engineering;

Abstract

Abstract Nonlinear ultrasonic (NLU) techniques have emerged as a potential solution to improve the resolution of nondestructive measurements to detect microstructural changes of cyclically loaded materials. However, current NLU methods need power-demanding instrumentation that is useful only in the laboratory settings. On the other hand, phased array systems provide the capability of sensing such changes when the later portion of the elastic waveforms, called diffuse field, is analyzed. Moreover, phased array systems are an excellent solution for field test measurement and imaging of material damage. This study explores the use of NLU metrics based on ratios of harmonic amplitudes and frequencies to map the buildup of damage precursors, such as crystal dislocations, under cyclic loading within the microstructure of fatigued 2024-T3 aluminum specimens. The results show that these metrics are highly sensitive to microstructural fatigue damage making them significantly important to measure mechanical properties, such as fracture toughness, that are extremely useful in predicting the remaining useful life of a studied material. A nonlinear metric of elastic energy that encapsulates the nonlinear effects of subharmonic and higher-harmonic generations and frequency ratio is proposed. These effects of spectral energy shifts are combined making this metric highly sensitive to nano- and micro-scale damage within the fatigued medium.

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3