Topology Optimization and Prototype of a Three-Dimensional Printed Compliant Finger for Grasping Vulnerable Objects With Size and Shape Variations

Author:

Liu Chih-Hsing1,Chiu Chen-Hua1,Chen Ta-Lun1,Pai Tzu-Yang1,Hsu Mao-Cheng1,Chen Yang1

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan e-mail:

Abstract

This study presents a topology optimization method to synthesize an innovative compliant finger for grasping objects with size and shape variations. The design domain of the compliant finger is a trapezoidal area with one input and two output ports. The topology optimized finger design is prototyped by three-dimensional (3D) printing using flexible filament, and be used in the developed gripper module, which consists of one actuator and two identical compliant fingers. Both fingers are actuated by one displacement input, and can grip objects through elastic deformation. The gripper module is mounted on an industrial robot to pick and place a variety of objects to demonstrate the effectiveness of the proposed design. The results show that the developed compliant finger can be used to handle vulnerable objects without causing damage to the surface of grasped items. The proposed compliant finger is a monolithic and low-cost design, which can be used to resolve the challenge issue for robotic automation of irregular and vulnerable objects.

Funder

"Ministry of Science and Technology, Taiwan"

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3