A Method to Double the Extension Ability of Radial Jet Drilling Technology

Author:

Jingbin Li1,Guangqing Zhang1,Gensheng Li1,Zhongwei Huang1,Weichang Li1

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum Beijing, Beijing 102249, China e-mail:

Abstract

Radial jet drilling (RJD) technology is an effective method to enhance oil and gas recovery by penetrating the near-wellbore damage zone, and increasing the drainage radius greatly. Recently, it is identified as a potential technology to develop the geothermal energy. But the extension ability, one of the most critical issues of the RJD, is limited. Because only high pressure flexible hose (HPFH), which is hard to be fed in and subjected to greater resistance by the diverter, can be used as the drill stem to turn from vertical to horizontal in the casing. In this paper, an innovative method to feed in the HPFH by the drag force generated by high velocity flow in narrow annulus is proposed. The drag force model is built, validated, and modified by theoretical and experimental ways. Results show that the resulting drag force, which is equivalent to the self-propelled force, can easily achieve and feed in the HPFH. There is a power law relationship between the drag force and the average velocity; the drag force increases linearly with the length of the narrow annulus. Higher average velocity and 1–1.5 m annulus length are recommended. According to force analysis, the extension ability of the RJD can be doubled theoretically by this method. The results of this paper will greatly promote the development of RJD technology.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3