Stochastic Characteristics in Microgrinding Wheel Static Topography

Author:

Kunz Jacob A.1,Rhett Mayor J.2

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

2. Associate Professor George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

Abstract

Superabrasive grind wheels are used for the machining of brittle materials such as tungsten carbide. Stochastic modeling of the wheel topography can allow for statistical bounding of the grind force characteristics allowing improved surface quality without sacrificing productivity. This study utilizes a machine vision method to measure the wheel topography of diamond microgrinding wheels. The results showed that there are large variances in wheel specifications from the manufacturer and that microgrinding wheels suffer from statistical scaling effects that increase wheel-to-wheel variability in the topography. Analysis of the static grit density values measured on the microgrinding wheels showed that the distributions provided by both analytic stochastic and numerical simulation models accurately predicted the static grit density within a significance level of 5%. Utilizing only manufacturer-supplied specifications caused the models to predict the static grit density with errors as large as 25.3% of the predicted value leading to a need for improved wheel tolerancing and in situ wheel measurement. The spacings between the grits on the wheel surface were shown to be independent of direction and can best be described by a loglogistic distribution.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Reference26 articles.

1. A Threshold Selection Method from Gray-Level Histograms;Automatica,1975

2. Influence of Microstructure on Ultraprecision Grinding of Cemented Carbides;Int. J. Mach. Tools Manuf.,2004

3. Final Report Concerning Cirp Cooperative Work on the Characterization of Grinding Wheel Topography;Ann. CIRP,1977

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3