Effects of the Radial Gap Between Impeller Tips and Volute Tongue Influencing the Performance and Pressure Pulsations of Pump as Turbine

Author:

Yang Sun-Sheng1,Liu Hou-Lin2,Kong Fan-Yu2,Xia Bin1,Tan Lin-Wei1

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China e-mail:

2. Professor Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China e-mail:

Abstract

The radial gap between the impeller tips and volute tongue is an important factor influencing the overall performance and unsteady pressure fields of the pump as turbine (PAT). In this paper, a numerical investigation of the PAT's steady performance with different radial gaps was first performed. The results show that there is an optimal radial gap for a PAT to achieve its highest efficiency. An analysis of the PAT's unsteady pressure fields indicates that the rotorstator interaction of a rotating impeller and stationery volute would cause high frequency unsteady pulsation within the volute and low frequency unsteady pressure pulsation within the impeller. The high frequency unsteady pressure pulsation would propagate through the PAT's flow channel. Thus, the unsteady pressure field within the impeller is the combined effect of these two kinds of pressure pulsations. The unsteady pressure pulsation within the outlet pipe is mainly caused by the propagation of unsteady pressure formed within the volute. With the increase of the radial gap, the amplitude of high frequency unsteady pressure pulsation within the volute caused by the rotor-stator interaction is decreased, while the amplitude of the low frequency unsteady pressure pulsation caused by the rotor-stator interaction within the impeller remains unchanged.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3