Experimental Investigation of a Hollow Cone Spray Using Laser Diagnostics

Author:

Das Mithun1,Chatterjee Souvick2,Mukhopadhyay Achintya2,Sen Swarnendu2

Affiliation:

1. Power Engineering Department, Jadavpur University, Kolkata 700098, India e-mail:

2. Mechanical Engineering Department, Jadavpur University, Kolkata 700032, India e-mail:

Abstract

Atomization of fuel is a key integral part for efficient combustion in gas turbines. This demands a thorough investigation of the spray characteristics using innovative and useful spray diagnostics techniques. In this work, an experimental study is carried out on a commercial hollow cone nozzle (Lechler) using laser diagnostics techniques. A hollow cone spray is useful in many applications because of its ability to produce fine droplets. But apart from the droplet diameter, the velocity field in the spray is also an important parameter to monitor and has been addressed in this work. Kerosene is used as the test fuel, which is recycled using a plunger pump providing a variation in the injection pressure from 100 to 300 psi. An innovative diagnostic technique used in this study is through illumination of the spray with a continuous laser sheet and capturing the same with a high speed camera. A ray of a laser beam is converted to a planer sheet using a lens combination which is used to illuminate a cross section of the hollow cone spray. This provides a continuous planar light source which allows capturing high speed images at 285 fps. The high speed images thus obtained are processed to understand the nonlinearity associated with disintegration of the spray into fine droplets. The images are shown to follow a fractal representation and the fractal dimension is found to increase with rise in injection pressure. Also, using PDPA, the droplet diameter distribution is calculated at different spatial and radial locations at a wide range of pressure.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3