Single-Step Shear-Based Deformation Processing of Electrical Conductor Wires

Author:

Issahaq Mohammed Naziru1,Chandrasekar Srinivasan2,Trumble Kevin P.1

Affiliation:

1. School of Materials Engineering, and Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907

2. School of Industrial Engineering, and Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907

Abstract

Abstract Commercial electrical conductor wires are currently produced from aluminum alloys by multi-step deformation processing involving rolling and drawing. These processes typically require 10 to 20 steps of deformation, since the plastic strain or reduction that can be imposed in a single step is limited by material workability and process mechanics. Here, we demonstrate a fundamentally different, single-step approach to produce flat wire aluminum products using machining-based deformation that also ensures adequate material workability in the formed product. Two process routes are proposed: (1) chip formation by free-machining (FM), with a post-machining, light drawing reduction (<20%) to achieve desired finish and (2) constrained chip formation by large strain extrusion machining (LSEM). Using commercially pure aluminum conductor alloys (Al 1100 and EC1350) as representative material systems, we demonstrate key features of the machining-based processing, including (a) single-step processing to achieve flat wire geometries, (b) surface finish (Ra = 0.2 to 1.0 μm) comparable to that of commercial wire products made by drawing/rolling, (c) deformation control independent of wire size, and (d) hardness increases of 50–150% over that of annealed wires, while retaining high electrical conductivity (>56% IACS). The wire microstructure, which can also be varied via the large-strain deformation parameters, is correlated with mechanical and electrical properties. Implications for commercial manufacture of flat wire products are discussed.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference43 articles.

1. Continuous Casting of Aluminium;Emley;Int. Met. Rev.,1976

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3