Assessment of Microbial Biofilm Growth on Nanocrystalline Diamond in a Continuous Perfusion Environment

Author:

Lewis J. S.1,Gittard S. D.1,Narayan R. J.1,Berry C. J.2,Brigmon R. L.2,Ramamurti R.3,Singh R. N.3

Affiliation:

1. Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, 152 MacNider Hall, Campus Box 7575, Chapel Hill, NC 27599-7575

2. Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808

3. Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221-0012

Abstract

A major concern with medical and dental biomaterials is colonization of these materials with microbial biofilms. One material processed using chemical vapor deposition and other conventional top-down nanomanufacturing technologies that has recently been considered for use in preventing growth of microorganisms is the nanocrystalline diamond. Nanocrystalline diamond coatings have been evaluated for use as coatings on medical implants (e.g., hip prostheses) and surgical tools due to their low coefficient of friction, high corrosion resistance, high hardness, and high wear resistance. In this study, the microstructural properties and microorganism interaction behavior of nanocrystalline diamond coatings were examined. A device for examining microbial biofilms known as a CDC biofilm reactor was used to examine the interaction between a fluorescent microorganism, Pseudomonas fluorescens, and nanocrystalline diamond coatings in a continuous perfusion environment. Biofilm formation was evident on the nanocrystalline diamond surface after 24 h. No correlation between grain size or morphology and cell density was observed; large variations in P. fluorescens growth on the coatings were observed, even for the samples with similar grain sizes and morphologies. The results of this study suggest that nanocrystalline diamond coatings do not prevent Pseudomonas fluorescens biofilm development in a continuous perfusion environment. Additional treatment of the nanocrystalline diamond coatings with antimicrobial and/or antifouling agents would be necessary to prevent formation of microbial biofilms. The development of novel continuous flow technologies for evaluating the growth of microbial biofilms on biomaterials will provide a better understanding of biomaterial-microorganism interaction and will enable the creation of enhanced antimicrobial biomaterials.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3