The Effect of Unequal Admission on the Performance and Loss Generation in a Double-Entry Turbocharger Turbine

Author:

Copeland Colin D.1,Newton Peter J.1,Martinez-Botas Ricardo1,Seiler Martin2

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London, UK, SW7 2AZ

2. ABB Turbo Systems Ltd., CH 5401, Baden, Switzerland

Abstract

The current work investigates a circumferentially divided turbine volute designed such that each gas inlet feeds a separate section of the turbine wheel. Although there is a small connecting interspace formed between the nozzle and the mixed-flow rotor inlet, this design does well to preserve the exhaust gas energy in a pulsed-charged application by largely isolating the two streams entering the turbine. However, this type of volute design produces some interesting flow features as a result of unequal flows driving the turbine wheel. To investigate the influence of unequal flows, experimental data from the turbocharger facility at Imperial College have been gathered over a wide range of steady-state, unequal admission conditions. These test results show a significant drop in turbine performance with increasing pressure difference between inlets. In addition, the swallowing capacities of each gas inlet are interdependent, thus indicating some flow interaction between entries. To understand the flow physics driving the observed performance, a full 3D computational fluid dynamics (CFD) model of the turbine was created. Results show a highly disturbed flow field as a consequence of the nonuniform admission. From these results, it is possible to identify the regions of aerodynamic loss responsible for the measured performance decrease. Given the unequal flows present in a double-entry design, each rotor passage sees an abrupt change in flow conditions as it rotates spanning the two feeding sectors. This operation introduces a high degree of unsteady flow into the rotor passage even when it operates in steady conditions. The amplitude and frequency of this unsteadiness will depend both on the level of unequal admission and the speed of rotor rotation. The reduced frequency associated with this disturbance supports the evidence that the flow in the rotor passage is unsteady. Furthermore, the CFD model indicates that the blade passage flow is unable to fully develop in the time available to travel between the two different sectors (entries).

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions;Szymko

2. Mixed-Flow Turbines for Automotive Turbochargers: Steady and Unsteady Performance;Martinez-Botas;Int. J. Engine Res.

3. Performance Evaluation of a Mixed Flow Turbocharger Turbine Under Pulsating Flow Conditions;Arcoumanis

4. The Pulse Flow Performance and Modelling of Radial Inflow Turbines;Baines

5. Experimental Evaluation of Active Flow Control Mixed Flow Turbine for Automotive Turbocharger Application;Pesiridis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3