Corrosion Fatigue of Steel Catenary Risers in Sweet Production

Author:

Pargeter Richard1,Baxter David1,Holmes Briony1

Affiliation:

1. TWI, Abington, Cambridge, UK

Abstract

Steel catenary risers (SCRs) are commonly used for deepwater oil and gas developments and the most economic material of construction is generally carbon manganese (C-Mn) steel. These risers suffer cyclic loading principally due to vessel movements, and vortex induced vibration (VIV) from passage of marine currents. For this reason, close attention is paid to fatigue design and girth weld quality, and fatigue testing is commonly carried out on procedure test welds. A further advantage of C-Mn steel is that good quality welds can readily be made, and more importantly, freedom from defects can be assured by reliable ultrasonic inspection. In sweet corrosive environments, when significant hydrogen effects would not be anticipated, a range of environmental effects on fatigue could be envisaged under different conditions, and at different stages of fatigue crack growth. For example, in early stages of growth, corrosion could blunt crack tips, and therefore slow the growth rate, whereas under other circumstances, or later in life, corrosion could provide additional crack extension, and accelerate growth. It has been demonstrated in this programme of fatigue crack growth rate and endurance testing that the most aggressive conditions in terms of corrosivity may not give shortest fatigue lives in testing. The results of tests comparing behaviour in air and in a very highly corrosive aqueous environment at 60°C saturated with CO2 (conditions which could not be sustained in production) have been explained by reference to competing effects of fatigue and corrosion. Comparison has been made with other published data. Important safety implications surrounding conditions for project-specific corrosion fatigue testing for riser design are considered.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3