An Experimental Study of Negative Drift Force Acting on a Floating OWC “Backward Bent Duct Buoy”

Author:

Imai Yasutaka1,Toyota Kazutaka1,Nagata Shuichi1,Setoguchi Toshiaki1,Oda Junko1,Matsunaga Narimasa1,Shimozono Takafumi1

Affiliation:

1. Saga University, Saga, Japan

Abstract

The utilization of renewable energy is required immediately since emissions of carbon dioxide are being restricted. To this end, we are investigating the ocean wave energy converter, especially the floating OWC “Backward Bent Duct Buoy” (BBDB). The BBDB, proposed by Masuda in 1986, is a wave energy converter of the ‘moored floating oscillating water column’ type that is composed of an air chamber, an L-shaped bent duct, a buoyancy chamber, and a turbine. The BBDB has certain positive characteristics. Firstly, the primary conversion performance of the BBDB is better than other floating OWCs. Secondly, the length of the BBDB is shorter than other floating OWCs. Thirdly, as the BBDB advances in the incident wave direction with slow speed waves because of the negative wave drift force, the mooring cost can be reduced. In this research, experiments under a various wave periods were carried out to clarify the characteristics and cause of the generation of negative drift force acting on a BBDB in regular waves with a two-dimensional wave tank at Saga University. The length of the BBDB model is 85cm. To measure the wave drift force, the model is moored with horizontal wire-springs. The motions of the BBDB, such as surge, heave, and pitch, are measured by remotely using image processing. The fluid velocity around the BBDB is measured by using particle image velocimetry (PIV). Motion tests of the BBDB without mooring are also carried out to measure the horizontal velocity of the BBDB in waves. From the experimental results, the characteristics and causes of the generation of negative drift force acting on the BBDB in regular waves are discussed.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3