Review and Assessment of Fatigue Data for Offshore Structural Components Containing Through-Thickness Cracks

Author:

Zhang Y. H.1,Stacey A.2

Affiliation:

1. TWI Ltd., Abington, Cambridge, UK

2. Health & Safety Executive, London, UK

Abstract

In recent years, structural integrity management schemes for offshore installations have placed increased reliance on the use of flooded member detection (FMD) as the principal inspection method. This method can be routinely employed in a remotely operated vehicle, which enables a large number of members to be inspected fairly quickly at a much reduced cost compared to using diver operated techniques. However, reliance on FMD for safety assurance requires that welded joints retain sufficient fatigue life and static strength after through-thickness cracking. A comprehensive examination of published work containing data on fatigue lives beyond through-thickness cracking in offshore structures was carried out, resulting in the development of a database of 281 relevant tests. The database was used to perform a statistical assessment of the effects of different testing conditions and geometrical parameters on the remaining fatigue life beyond the occurrence of through-thickness cracking, N3, which was represented by a parameter Re. Whilst the data showed a large amount of scatter, it was found that Re depends strongly on chord thickness, loading mode, type of joint and testing environment. In some cases, a significant amount of remaining life existed. This was often associated with T-type tubular joints with thin chord thickness under out-of-plane loading and a seawater (with CP) environment. The influence of the relevant parameters on Re is discussed and attributed to their effect on crack shape, stress distribution, cracking location and crack propagation path.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Damage and Assessment of Structures;Underwater Inspection and Repair for Offshore Structures;2021-03-26

2. Flume testing of passively adaptive composite tidal turbine blades under combined wave and current loading;Journal of Fluids and Structures;2020-02

3. State-of-the-art of crack propagation modelling in tubular joints;IOP Conference Series: Materials Science and Engineering;2019-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3