Underplatform Dampers for Turbine Blades: Theoretical Modelling, Analysis and Comparison With Experimental Data

Author:

Sanliturk Kenan Y.1,Ewins David J.1,Stanbridge Anthony B.1

Affiliation:

1. Imperial College of Science, Technology and Medicine, London, UK

Abstract

This paper describes a theoretical model for analysing the dynamic characteristics of wedge-shaped underplatform dampers for turbine blades, with the objective that this model can be used to minimise the need for conducting expensive experiments for optimising such dampers. The theoretical model presented in the paper has several distinct features to achieve this objective including: (i) it makes use of experimentally-measured contact characteristics (hysteresis loops) for description of the basic contact behaviour of a given material combination with representative surface finish, (ii) the damper motion between the blade platform locations is determined according to the motion of the platforms, (iii) three-dimensional damper motion is included in the model, and (iv) normal load variation across the contact surfaces during vibration is included, thereby accommodating contact opening and closing during vibration. A dedicated non-linear vibration analysis program has been developed for this study and predictions have been verified against experimental data obtained from two test rigs. Two cantilever beams were used to simulate turbine blades with real underplatform dampers in the first experiment. The second experiment comprised real turbine blades with real underplatform damper. Correlation of the predictions and the experimental results revealed that the analysis can predict (i) the optimum damping condition, (ii) the amount of response reduction and (iii) the natural frequency shift caused by friction dampers, all with acceptable accuracy. It has also been shown that the most commonly-used underplatform dampers in practice are prone to rolling motion, an effect which reduces the damping in certain modes of vibration usually described as the lower nodal diameter bladed-disc modes.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fretting Damage and Structural Damping;Fretting Wear, Fretting Fatigue and Damping of Structures;2023-12-27

2. A novel test rig to investigate under-platform damper dynamics;Mechanical Systems and Signal Processing;2018-02

3. Optimal normal load variation in wedge-shaped Coulomb dampers;The Journal of Strain Analysis for Engineering Design;2015-10-30

4. Measurement of the kinematics of two underplatform dampers with different geometry and comparison with numerical simulation;Journal of Sound and Vibration;2009-06

5. A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems;Journal of Engineering for Gas Turbines and Power;2002-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3