Affiliation:
1. National Research Council of Canada, Division of Mechanical Engineering, Ottawa, Ontario, K1A 0R6, Canada
Abstract
Empirical formulae are presented by means of which the specific heat, mean molecular weight, density, and specific heat ratio of aviation fuel-air and diesel fuel-air systems can be calculated as functions of pressure, temperature, equivalence ratio, and hydrogen-to-carbon atomic ratio of the fuel. The formulae have been developed by fitting the data from a detailed chemical equilibrium code to a functional expression. Comparisons of the results from the proposed formulae with the results obtained from a chemical equilibrium code have shown that the mean absolute error in predicted specific heat is 0.8 percent, and that for molecular weight is 0.25 percent. These formulae provide a very fast and easy means of predicting the thermodynamic properties of combustion gases as compared to detailed equilibrium calculations, and they are also valid for a wide range of complex hydrocarbon mixtures and pure hydrocarbons as well as aviation and diesel fuels.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献