Computing the Global Visibility Map Using Slice Geometry for Setup Planning

Author:

Hou Guangyu1,Frank Matthew C.1

Affiliation:

1. Department of Industrial and Manufacturing System Engineering, Iowa State University, 3023 Black Engineering, Ames, IA 50011 e-mail:

Abstract

This paper introduces a new method that uses slice geometry to compute the global visibility map (GVM). Global visibility mapping is a fundamentally important process that extracts geometric information about an object, which can be used to solve hard problems, for example, setup and process planning in computer numerical control (CNC) machining. In this work, we present a method for creating the GVM from slice data of polyhedron models, and then show how it can help determine around which axis of rotation a part can be machined. There have been various methods of calculating the GVM to date, tracing back to the well-known seminal methods that use Gaussian mapping. Compared to the considerable amount of work in this field, the proposed method has an advantage of starting from feature-free models like stereolithography (STL) files and has adjustable resolution. Moreover, since it is built upon slicing the model, the method is embarrassingly parallelizable in nature, thus suitable for high-performance computing. Using the GVM obtained by this method, we generate an axis of rotation map to facilitate the setup planning for four-axis CNC milling machines as one implementation example.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A general framework of workpiece setup optimization for the five-axis machining;International Journal of Machine Tools and Manufacture;2020-02

2. Generating Machining Directions for 5-axis NC Machining of Cycling Helmet’s Mold Components;International Journal of Precision Engineering and Manufacturing;2019-06-18

3. Visualization of the setup location of a workpiece for five-axis machining;Journal of Advanced Mechanical Design, Systems, and Manufacturing;2019

4. Fabrication oriented shape decomposition using polycube mapping;Computers & Graphics;2018-12

5. Spiral Tool Path Generation Method on Mesh Surfaces Guided by Radial Curves;Journal of Manufacturing Science and Engineering;2018-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3