Net-Shape Tensile Specimens as Representatives of Material Properties of Metal Additive Manufacturing: Evaluation and Correction Factor

Author:

Bass Nicholas1,Jalui Sagar2,Manogharan Guha2

Affiliation:

1. Penn State University Cumberland Additive , Austin, Texas, United States

2. Penn State University , University Park, Pennsylvania, United States

Abstract

Abstract Tensile testing is the most prevalent method for characterizing the mechanical properties of additively manufactured (AM) materials. During qualification of metallic AM properties, near-net AM parts are often machined prior to mechanical testing. The aim of this study is to understand the influence of net-shaped tensile coupons without post-AM machining on the accuracy of bulk material properties. The motivation for this study lies in: (1) reducing the qualification time and costs by (2) formulating and validating a correction factor to estimate bulk AM properties from mechanical testing of as-AM coupons. This research focused on the tensile testing of Laser Powder Bed Fusion (LPBF) produced Inconel 718 to isolate the effects of as-AM surface roughness. Six different surface conditions were produced by varying two different laser processing conditions, with and without contour laser scans. Specimens (n = 5 per condition) were tested in both net-shape and post-AM machined conditions. Surface roughness was analyzed using both stylus contact profilometry and micro-computed tomography (micro-CT) non-contact analysis. ANOVA analysis was performed to derive inference on processing conditions and resulting mechanical properties. It was observed that the measurement error in gauge diameter primarily accounts for variability in mechanical properties between machined and net-shape coupons, specifically Ultimate Tensile Strength (UTS). This study presents a methodology to determine corrected gauge diameter based on depth of surface roughness. Findings from this study will enable net-shape tensile data to be compared against machined data for accurately predicting the strength of parts with as-AM surfaces. By accounting for surface roughness depth, tensile strength of net-shape AM coupons was within 1% accuracy to that of machined AM coupons.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3