Embrace the Imperfection: How Intrinsic Variability of Roll-to-Roll Manufactured Environmental Sensors Enable Self-Calibrating, High-Precision Quorum Sensing

Author:

Saha Ajanta1,Gopalakrishnan Sarath1,Waimin Jose1,Sedaghat Sotoudeh1,Mi Ye1,Glassmaker Nicholas1,Cakmak Mukkerem1,Shakouri Ali1,Rahimi Rahim1,A. Alam Muhammad1

Affiliation:

1. Purdue University , West Lafayette, Indiana, United States

Abstract

Abstract Roll-to-Roll (R2R) process is well suited for manufacturing low cost, miniaturized, solid contact Ion-selective electrodes (ISEs) of potentiometric sensors to be used for continuous monitoring of various analytes in environmental, industrial, and health-care applications. It is presumed that the intrinsic thickness variability of the R2R process would limit the accuracy of the ISE-based sensors and would make them inferior to sensors fabricated by higher precision manufacturing processes. Instead, in this paper we propose to use the intrinsic variability of R2R process as a “resource” to achieve high-accuracy sensing even when the sensors are operated in uncontrolled field conditions. This is achieved by applying a fundamentally new physics-guided statistical approach involving: (i) ‘Self calibration’ where we calculate temperature from differential measurement of the ISEs induced by R2R variability to calibrate the sensors in uncontrolled temperature condition, and (ii) ‘Quorum sensing’ where we use a collection of R2R manufactured sensors to estimate the true concentration considering credibility of each sensor calculated by Bayesian Maximum Likelihood Estimation method. With these two new techniques, we demonstrate the use of “low-precision” R2R sensors to measure nitrate concentration of an agricultural field continuously over a period of 15 days within 10% of the ground-truth measured by the traditional high-precision commercial nitrate sensor.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3