Surface Profile Characterization by Autoregressive-Moving Average Models

Author:

DeVor R. E.1,Wu S. M.2

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Urbana, Urbana, Ill.

2. Department of Mechanical Engineering and Statistics, University of Wisconsin, Madison, Wisc.

Abstract

The surface texture of a machined part is in general composed of three topographical components: waviness, roughness, and errors of form. A new technique for surface profile characterization is introduced which employs parametric stochastic models of the autoregressive-moving average (ARMA) class. The method for obtaining these models for surface profiles is shown by an example. The ARMA modeling technique for profile description is evaluated in three parts to determine its validity, workability, and descriptive power. This analysis is developed through the criteria of ergodicity, sensitivity, and describability. The ergodicity criterion tests the ability of models for physically identical profiles to convey equivalent information. The sensitivity criterion measures the level of detection of topographical differences among profiles by the ARMA model parameters. The descriptive ability of the models is examined by interpreting their parameters in light of the physical components of the profile. To implement this evaluation, ARMA models for eight different milled surfaces are determined and used.

Publisher

ASME International

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Statistical Approach to Surface Metrology for 3D-Printed Stainless Steel;Technometrics;2022-01-10

2. A survey of recent grinding wheel topography models;International Journal of Machine Tools and Manufacture;2006-03

3. Improving surface roughness in turning using optimal control of tool's radial position;Journal of Materials Processing Technology;2005-08

4. A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 2: Grinding Wheel Surface Texture Model;Journal of Manufacturing Science and Engineering;2001-02-01

5. Characterization of grinding-induced cracks in ceramics;International Journal of Mechanical Sciences;1995-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3