Effects of Grain Size and Operating Parameters on the Mechanics of Grinding

Author:

Kannappan S.1,Malkin S.1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas

Abstract

An investigation is described of the effects of grain size and operating parameters on the mechanics of grinding. Results indicate that the specific cutting energy in grinding, which is the total specific grinding energy minus the specific energy due to sliding between the wear flats and the workpiece, is independent of grain size and decreases with increasing table speed and downfeed. It is postulated that the specific cutting energy consists of chip forming energy which is independent of table speed and downfeed, and plowing energy which decreases with increasing table speed and downfeed. Results for G-ratio, surface finish, and burning conditions are also presented. Of particular interest are the effects of grain size on burning conditions. With finer grain size, burning occurs at larger wear flat area and energy input per unit area ground, but the G-ratio and grinding wheel tool life are less. This is related to increased attritious wear with finer grains.

Publisher

ASME International

Subject

General Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge-wrapping method for prediction and evaluation of material removal behavior in robotic belt grinding;Mechanical Systems and Signal Processing;2024-02

2. Investigation of cutting mechanism and residual stress state with grooved grinding wheels;The International Journal of Advanced Manufacturing Technology;2023-07-27

3. Investigation of dynamic fracture toughness on zirconia ceramic grinding performance with different grain sizes;The International Journal of Advanced Manufacturing Technology;2022-07-18

4. Specific energy modeling of abrasive cut off operation based on sliding, plowing, and cutting;Journal of Materials Research and Technology;2022-05

5. Material removal mechanisms of bonded abrasive machining (forces, friction, and energy);Tribology and Fundamentals of Abrasive Machining Processes;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3