RELAP5 STH and Fluent CFD Coupled Calculations of a PLOHS + LOF Transient in the HLM Experimental Facility CIRCE

Author:

Angelucci M.1,Martelli D.1,Forgione N.1,Tarantino M.2

Affiliation:

1. University of Pisa, Pisa, Italy

2. ENEA UTIS-TCI, Camugnano, Italy

Abstract

This work describes the activity performed at the University of Pisa concerning the application of an in-house developed coupling methodology between a modified version of RELAP5/Mod.3.3 and the ANSYS Fluent commercial CFD code to a pool system. Mono-dimensional codes, like RELAP5, are commonly used for thermal-hydraulic analysis of entire complex systems. Nevertheless, their one-dimensional feature represents a limit in the analysis of such problems where significant 3D phenomena are involved. On the other hand, CFD codes standalone are usually employed to simulate relatively small domains. The use of System Thermal-Hydraulic + CFD coupled calculations can overcome these issues, allowing the simulation of a complete system, but with a part of the domain reproduced with the CFD code. In this work, the coupled calculation technique was used to simulate a PLOHS + LOF transient in the HLM experimental facility CIRCE (CIRCulation Experiment), located at the ENEA Brasimone research centre. The paper initially calls up the coupling procedure adopted, consisting in a “two-way” coupling. MATLAB software, used as external interface, manages the exchange of data between the system and the CFD code. The numerical method adopted for the coupling is the implicit scheme. Then, the main features of the CIRCE facility are briefly described, so are the two computational domains employed in this study. In particular, the CFD code was used to model the CIRCE pool (8 m high) and the Decay Heat Removal (DHR) heat exchanger. Due to the long duration of the transient simulated, a 2D axial-symmetric domain was chosen in order to reduce the computational time. The test section, placed inside the pool and consisting in a heat source and a heat sink, and the secondary side of the heat exchanger, were modeled with RELAP5. The use of the coupling tool allowed to set realistic boundary conditions in the calculation, more representative of the experimental ones. The main numerical results obtained from the PLOHS + LOF coupled calculation were compared with experimental data. Calculated LBE mass flow rates in the test section and in the DHR showed good agreement with experimental data. Some discrepancies with respect to the experimental trends were noticed for LBE temperatures; these should be related to some simplifications introduced in the model. Nevertheless, obtained outcomes represent a preliminary guideline for the improvement of the modeling for future works.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3