Temperature Elevation in the Human Eye Due To Intraocular Projection Prosthesis Device

Author:

Gongal Dipika1,Thakur Siddhant2,Panse Ashay1,Stark John A.1,Yu Charles Q.3,Foster Craig D.4

Affiliation:

1. Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL 60607

2. Surgical Planner II, Arthrex Inc., Naples, FL 34119

3. Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA

4. Computational Mechanics Laboratory, Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL 60607

Abstract

Abstract Corneal opacity is a leading cause of blindness worldwide. Corneal transplantation and keratoprosthesis can restore vision but have limitations due to the shortage of donor corneas and complications due to infection. A proposed alternative treatment using an intraocular projection prosthesis device can treat corneal disease. In this study, we perform a transient thermal analysis of the bionic eye model to determine the power the device can produce without elevating the eye tissue temperature above the 2°C limit imposed by the international standard for implantable devices. A 3D finite element model, including blood perfusion and natural convection fluid flow of the eye, was created. The device was placed 1.95 mm from the iris, which experienced less than 2°C rise in the tissue temperature at a maximum power dissipation of LED at 100 mW and microdisplay at 25 mW.

Funder

National Eye Institute

U.S. Department of Defense

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3