Theoretical Modeling of Surface Asperity Depression Into an Elastic Foundation Under Static Loading

Author:

Radchik and V. S.1,Ben-Nissan B.1,Mu¨ller W. H.2

Affiliation:

1. University of Technology, Sydney Department of Chemistry Materials and Forensic Science, P.O. Box 123 Broadway N.S.W. 2007, Australia

2. Fakulta¨t V. Verkehrs und Maschinensysteme, Institut fu¨r Mechanik, Sekr. MS 2, Technische Universita¨t Berlin, Straße des 17, Juni 135, 10623 Berlin, Germany

Abstract

A theoretical analysis is carried out in closed-form to quantitatively describe the pressing of an individual surface asperity into its elastic bulk when subjected to normal loads. To this end, a single asperity is simulated by a paraboloid of revolution of an arbitrary even power. The investigation is based on theory of elastic contact as originally developed by Shtaerman. It is shown that additional pressing of an individual asperity into the elastic bulk essentially depends upon four parameters: the elastic compression of its apex, the initial magnitude of the height of the asperity, a constant that characterizes the shape of the asperity peak, and the elastic properties of the materials involved in the contact. The analysis shows that the impression of the asperity into the elastic bulk increases for decreasing smoothness of the paraboloid. It will be demonstrated that the impression of the asperity into the elastic bulk, if both are made of the same material, typically reaches 50 percent of the value of elastic compression of the asperity peak.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3