A Perspective on Democratizing Mechanical Testing: Harnessing Artificial Intelligence to Advance Sustainable Material Adoption and Decentralized Manufacturing

Author:

Athanasiou Christos E.11,Liu Xing23,Gao Huajian44

Affiliation:

1. Georgia Institute of Technology Daniel Guggenheim School of Aerospace Engineering, , Atlanta, GA 30332

2. Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering, , Atlanta, GA 30332 ;

3. New Jersey Institute of Technology Department of Mechanical, and Industrial Engineering, , Newark, NJ 07102

4. Tsinghua University Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, , Beijing 100084 , China

Abstract

Abstract Democratized mechanical testing offers a promising solution for enabling the widespread adoption of recycled and renewably sourced feedstocks. Locally sourced, sustainable materials often exhibit variable mechanical properties, which limit their large-scale use due to tight manufacturing specifications. Wider access to mechanical testing at the local level can address this challenge by collecting data on the variable properties of sustainable feedstocks, allowing for the development of appropriate, uncertainty-aware mechanics frameworks. These frameworks are essential for designing custom manufacturing approaches that accommodate variable local feedstocks, while ensuring product quality and reliability through post-manufacturing testing. However, traditional mechanical testing apparatuses are too costly and complex for widespread local use by individuals or small, community-based facilities. Despite promising efforts over the past decade to develop more affordable and versatile testing hardware, significant limitations remain in their reliability, adaptability, and ease–of-use. Recent advances in artificial intelligence (AI) present an opportunity to overcome these limitations by reducing human intervention, enhancing instrument reliability, and facilitating data interpretation. AI can thus enable the creation of low-cost, user-friendly mechanical testing infrastructure. Future efforts to democratize mechanical testing are expected to be closely linked with advancements in manufacturing and materials mechanics. This perspective paper highlights the need to embrace AI advancements to facilitate local production from sustainable feedstocks and enhance the development of decentralized, low-/zero-waste supply chains.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3