The Effects of External Compression on Venous Blood Flow and Tissue Deformation in the Lower Leg

Author:

Dai Guohao1,Gertler J. P.2,Kamm R. D.1

Affiliation:

1. The Center for Biomedical Engineering and the Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

2. Division of Vascular Surgery and the Vascular Research Laboratory, The Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

Abstract

External pneumatic compression of the lower legs is effective as prophylaxis against deep vein thrombosis. In a typical application, inflatable cuffs are wrapped around the patient’s legs and periodically inflated to prevent stasis, accelerate venous blood flow, and enhance fibrinolysis. The purpose of this study was to examine the stress distribution within the tissues, and the corresponding venous blood flow and intravascular shear stress with different external compression modalities. A two-dimensional finite element analysis (FEA) was used to determine venous collapse as a function of internal (venous) pressure and the magnitude and spatial distribution of external (surface) pressure. Using the one-dimensional equations governing flow in a collapsible tube and the relations for venous collapse from the FEA, blood flow resulting from external compression was simulated. Tests were conducted to compare circumferentially symmetric (C) and asymmetric (A) compression and to examine distributions of pressure along the limb. Results show that A compression produces greater vessel collapse and generates larger blood flow velocities and shear stresses than C compression. The differences between axially uniform and graded-sequential compression are less marked than previously found, with uniform compression providing slightly greater peak flow velocities and shear stresses. The major advantage of graded-sequential compression is found at midcalf. Strains at the lumenal border are approximately 20 percent at an external pressure of 50 mmHg (6650 Pa) with all compression modalities.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3