A Multidomain Engineering Change Propagation Model to Support Uncertainty Reduction and Risk Management in Design

Author:

Hamraz Bahram1,Caldwell Nicholas H. M.1,John Clarkson P.1

Affiliation:

1. Engineering Design Centre, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

Abstract

Engineering change (EC) is a source of uncertainty. While the number of changes to a design can be optimized, their existence cannot be eliminated. Each change is accompanied by intended and unintended impacts both of which might propagate and cause further knock-on changes. Such change propagation causes uncertainty in design time, cost, and quality and thus needs to be predicted and controlled. Current engineering change propagation models map the product connectivity into a single-domain network and model change propagation as spread within this network. Those models miss out most dependencies from other domains and suffer from “hidden dependencies”. This paper proposes the function-behavior-structure (FBS) linkage model, a multidomain model which combines concepts of both the function-behavior-structure model from Gero and colleagues with the change prediction method (CPM) from Clarkson and colleagues. The FBS linkage model is represented in a network and a corresponding multidomain matrix of structural, behavioral, and functional elements and their links. Change propagation is described as spread in that network using principles of graph theory. The model is applied to a diesel engine. The results show that the FBS linkage model is promising and improves current methods in several ways: The model (1) accounts explicitly for all possible dependencies between product elements, (2) allows capturing and modeling of all relevant change requests, (3) improves the understanding of why and how changes propagate, (4) is scalable to different levels of decomposition, and (5) is flexible to present the results on different levels of abstraction. All these features of the FBS linkage model can help control and counteract change propagation and reduce uncertainty and risk in design.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3