e-bra With Nanosensors for Real Time Cardiac Health Monitoring and Smartphone Communication

Author:

Varadan Vijay K.1,Kumar Prashanth S.2,Oh Sechang2,Kegley Lauren2,Rai Pratyush3

Affiliation:

1. Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701; Department of Neurosurgery, College of Medicine, Pennsylvania State University, Hershey Medical Center 500, University Drive, Hershey, PA 17033; Global Institute for Nanotechnology in Engineering and Medicine, 700 Research Center Boulevard, Fayetteville, AR 72701

2. Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701

3. Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701

Abstract

Mortality due to cardiac related ailments has been consistently higher in women as compared with men since the early 1980s in the United States. Gender related differences in specificity of regular noninvasive diagnostic tools and the lack of a clear understanding of the effect of postmenopausal hormonal changes in women have been cited as the two main reasons for this disparity. Recent advances in secondary and tertiary diagnostic information extraction techniques from signals such as electrocardiogram (ECG) through heart rate variability (HRV) analysis and wavelet domain analysis techniques have revealed many differences in autonomic nervous-cardiovascular activity regulation, between men and women. Moreover, the diagnostic tests for cardiovascular diseases usually start upon the manifestation of chest pain or angina. At this stage, disease management is the only option as opposed to preventive treatments, which is also possible with early detection based on the diagnostic information extraction techniques as stated previously. In order to truly realize the potential of such techniques, continuous and long-term monitoring is an essential requirement. This, in turn, requires sensor systems to be seamlessly mounted on day to day clothing for women. This paper describes an e-bra platform for nanosensors toward cardiovascular monitoring. The sensors, nanomaterial, or textile based dry electrodes acquire electrocardiograph, which is sent to a textile mounted wireless module. A smartphone or a wireless Bluetooth enabled PC can receive these data and store or process the information as necessary. In this paper, we wirelessly acquire ECG from subjects with the e-bra and perform HRV analysis on a PC. The use of a Smartphone as a base station for receiving data offers the advantage of cellular network connectivity to internet and consequently cloud computing resources for more complex computations such as feature extraction and automatic diagnosis. To address this capability, we further propose a protocol for response to emergencies from both the cloud backend and the smartphone itself.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3