Modeling Degenerative Disk Disease in the Lumbar Spine: A Combined Experimental, Constitutive, and Computational Approach

Author:

Ayturk Ugur M.1,Gadomski Benjamin2,Schuldt Dieter2,Patel Vikas3,Puttlitz Christian M.4

Affiliation:

1. Department of Orthopaedic Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115

2. Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523

3. The Spine Center, Department of Orthopaedics, University of Colorado Denver, Denver, CO 80045

4. Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523

Abstract

Using a continuum approach for modeling the constitutive mechanical behavior of the intervertebral disk’s annulus fibrosus holds the potential for facilitating the correlation of morphology and biomechanics of this clinically important tissue. Implementation of a continuum representation of the disk’s tissues into computational models would yield a particularly valuable tool for investigating the effects of degenerative disease. However, to date, relevant efforts in the literature towards this goal have been limited due to the lack of a computationally tractable and implementable constitutive function. In order to address this, annular specimens harvested from a total of 15 healthy and degenerated intervertebral disks were tested under planar biaxial tension. Predictions of a strain energy function, which was previously shown to be unconditionally convex, were fit to the experimental data, and the optimized coefficients were used to modify a previously validated finite element model of the L4/L5 functional spinal unit. Optimization of material coefficients based on experimental results indicated increases in the micro-level orientation dispersion of the collagen fibers and the mechanical nonlinearity of these fibers due to degeneration. On the other hand, the finite element model predicted a progressive increase in the stress generation in annulus fibrosus due to stepwise degeneration of initially the nucleus and then the entire disk. Range of motion was predicted to initially increase with the degeneration of the nucleus and then decrease with the degeneration of the annulus in all rotational loading directions, except for axial rotation. Overall, degeneration was observed to specifically impact the functional effectiveness of the collagen fiber network of the annulus, leading to changes in the biomechanical behavior at both the tissue level and the motion-segment level.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3