Spark Advance Modeling of Hydrogen-Fueled Spark Ignition Engines Using Combustion Descriptors

Author:

Verma Saket1,Das L. M.2

Affiliation:

1. Engines and Unconventional Fuels Lab, Centre for Energy Studies, Indian Institute of Technology Delhi, Block-V, Huaz Khas, New Delhi 110016, India e-mails: ;

2. Centre for Energy Studies, Indian Institute of Technology Delhi, Huaz Khas, New Delhi 110016, India

Abstract

In-cylinder pressure-based combustion descriptors have been widely used for engine combustion control and spark advance scheduling. Although these combustion descriptors have been extensively studied for gasoline-fueled spark ignition (SI) engines, adequate literature is not available on use of alternative fuels in SI engines. In an attempt to partially address this gap, present work focuses on spark advance modeling of hydrogen-fueled SI engines based on combustion descriptors. In this study, two such combustion descriptors, namely, position of the pressure peak (PPP) and 50% mass fraction burned (MFB) have been used to evaluate the efficiency of the combustion. With a view to achieve this objective, numerical simulation of engine processes was carried out in computational fluid dynamics (CFD) software ANSYS fluent and simulation data were subsequently validated with the experimental results. In view of typical combustion characteristics of hydrogen fuel, spark advance plays a very crucial role in the system development. Based on these numerical simulation results, it was observed that the empirical rules used for combustion descriptors (PPP and 50% MFB) for the best spark advance in conventional gasoline fueled engines do not hold good for hydrogen engines. This work suggests revised empirical rules as: PPP is 8–9 deg after piston top dead center (ATDC) and position of 50% MFB is 0–1 deg ATDC for the maximum brake torque (MBT) conditions. This range may vary slightly with engine design but remains almost constant for a particular engine configuration. Furthermore, using these empirical rules, spark advance timings for the engine are presented for its working range.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3