An Experimental Study of the Parameters That Determine Slider-Disk Contacts During Dynamic Load-Unload

Author:

Jeong T. G.1,Bogy D. B.1

Affiliation:

1. Computer Mechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

The parameters that appear to determine if slider-disk contact occurs during dynamic loading are the relative loading velocity at the instant of load and the initial pitch and roll of the slider at its unloaded state. A dual-beam LDV system is employed in this study to measure the displacement, pitch, and roll during dynamic loading for five different standard 3380-type sliders in order to investigate the effects of the initial pitch and roll. The effects of the initial height and control loading speed are also examined by using the dual-beam LDV and acoustic emission (AE). Based on the experimental results, we propose several slider-disk contact criteria. Among them, the criterion based on the initial diagonal slope and the peak loading velocity gives a simple way to predict if slider-disk contacts will occur, but it overlooks the effect of the signs of the initial pitch and roll. A three-dimensional criterion based on the peak velocity and the initial pitch and roll angles appears to be more reliable. Using either criterion, it is found that high peak loading velocity causes slider-disk contact, and sliders with larger initial pitch or roll angles are more likely to hit the disk.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3