Critical Conditions and the Choking Mass Flow Rate in Nonequilibrium Wet Steam Flows

Author:

Young J. B.1

Affiliation:

1. Whittle Laboratory, University of Cambridge, Cambridge, England

Abstract

A theoretical analysis of choking in steady, one-dimensional, nonequilibrium, wet steam flows is presented. It is shown that such a flow becomes choked when the vapor phase velocity attains the frozen speed of sound somewhere in the system. The upstream flow pattern cannot then be altered by small adjustments of the back pressure and the mass flow rate is close to, although not necessarily identical to, its maximum value. The equilibrium speed of sound has no physical relevance in such flows. In a choked converging nozzle the critical conditions always occur in the exit plane of the nozzle. In a converging-diverging nozzle, however, the shape of the diverging section influences the throat conditions and throughput. Comparison of the theory with the few experiments reported in the literature shows excellent agreement.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental validation of sonic speed theory for wet steam;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2022-02-10

2. Analysis and design of wet-steam stages;Advances in Steam Turbines for Modern Power Plants;2022

3. Delivery of inert gas through a vertical borehole using inert gas generator: A theoretical study;International Journal of Mining Science and Technology;2020-07

4. Boundary layer of non-equilibrium condensing steam flow in a supersonic nozzle;Applied Thermal Engineering;2018-01

5. Effects of non-equilibrium condensation on aerodynamics of the flow field in a steam turbine cascade;Scientia Iranica;2017-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3