Frequency Response of a Viscoelastic Tensegrity Model: Structural Rearrangement Contribution to Cell Dynamics

Author:

Cañadas Patrick1,Wendling-Mansuy Sylvie2,Isabey Daniel3

Affiliation:

1. CNRS UMR 5508 Laboratoire de Mécanique et Génie Civil (LMGC), Université Montpellier II - CC 048, Place Eugène Bataillon, 34 095 Montpellier Cedex 05, France

2. CNRS–USR 2164 Laboratoire d’Aérodynamique et Biomécanique du Mouvement, Université de la Méditerranée, 163 avenue de Luminy, case 918, 13288 Marseille Cedex 09, France

3. INSERM, UMR 651, Fonctions Cellulaires et Moléculaires de l’Appareil Respiratoire et des Vaisseaux, Equipe Biomécanique Cellulaire et Respiratoire, Université Paris XII, Faculté de Médecine, ISBS Paris, 8, rue du Général Sarrail, 94010 Créteil cedex, France

Abstract

Abstract In an attempt to understand the role of structural rearrangement onto the cell response during imposed cyclic stresses, we simulated numerically the frequency-dependent behavior of a viscoelastic tensegrity structure (VTS model) made of 24 elastic cables and 6 rigid bars. The VTS computational model was based on the nonsmooth contact dynamics (NSCD) method in which the constitutive elements of the tensegrity structure are considered as a set of material points that mutually interact. Low amplitude oscillatory loading conditions were applied and the frequency response of the overall structure was studied in terms of frequency dependence of mechanical properties. The latter were normalized by the homogeneous properties of constitutive elements in order to capture the essential feature of spatial rearrangement. The results reveal a specific frequency-dependent contribution of elastic and viscous effects which is responsible for significant changes in the VTS model dynamical properties. The mechanism behind is related to the variable contribution of spatial rearrangement of VTS elements which is decreased from low to high frequency as dominant effects are transferred from mainly elastic to mainly viscous. More precisely, the elasticity modulus increases with frequency while the viscosity modulus decreases, each evolution corresponding to a specific power-law dependency. The satisfactorily agreement found between present numerical results and the literature data issued from in vitro cell experiments suggests that the frequency-dependent mechanism of spatial rearrangement presently described could play a significant and predictable role during oscillatory cell dynamics.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference53 articles.

1. Fluid Shear-Induced Mechanical Signaling in MC3T3-E1 Osteoblasts Requires Cytoskeleton-Integrin Interactions;Pavalko;Am. J. Physiol.

2. Role of Collagenase in Mediating In Vitro Alveolar Epithelial Wound Repair;Planus;J. Opt. Soc. Am. B

3. Functional Morphology and Biomechanics;Bereiter-Hahn;Verh. Dtsch. Zool. Ges.

4. Cellular Mechanism as an Indicator of CSK Structure and Function;Elson;Annu. Rev. Biophys. Biophys. Chem.

5. Effects of Gravitational Changes on the Bone System In Vitro and In Vivo;Vico;Bone (N.Y.)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3