Nanotechnology Coatings for Erosion Protection of Turbine Components

Author:

Swaminathan V. P.“Swami”1,Wei Ronghua2,Gandy David W.3

Affiliation:

1. TurboMet International, San Antonio, TX 78250

2. Southwest Research Institute, San Antonio, TX 78238

3. Electric Power Research Institute, Charlotte, NC 28262

Abstract

Solid particle erosion (SPE) and liquid droplet erosion (LDE) cause severe damage to turbine components and lead to premature failures, business loss, and repair costs to power plant owners and operators. Under a program funded by the Electric Power Research Institute, TurboMet International and Southwest Research Institute (SRI) have developed hard erosion resistant nanocoatings and have conducted evaluation tests. These coatings are targeted for application in steam and gas turbines to mitigate the adverse effects of SPE and LDE on rotating blades and stationary vanes. Based on a thorough study of the available information, the most promising coatings, such as nanostructured titanium silicon carbonitride (TiSiCN), titanium nitride (TiN), and multilayered nanocoatings, were selected. State-of-the-art nanotechnology coating facilities at SwRI were used to develop the coatings. The plasma enhanced magnetron sputtering method was used to apply these coatings on various substrates. Ti–6Al–4V, 12Cr, 17-4PH, and custom 450 stainless steel substrates were selected based on the current alloys used in gas turbine compressors and steam turbine blades and vanes. Coatings with up to 30μm thickness have been deposited on small test coupons. Initial screening tests on coated coupons by solid particle erosion testing indicate that these coatings have excellent erosion resistance by a factor of 20 over the bare substrate. Properties of the coating, such as modulus, hardness, microstructural conditions including the interface, and bond strength, were determined. Tensile and high-cycle fatigue tests on coated and uncoated specimens indicate that the presence of the coatings has no negative effects but has a positive influence on the high-cycle fatigue strength at zero and high mean stresses.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference22 articles.

1. Investigation of Coatings at High Temperature for Use in Turbomachinery;Tabakoff;Surf. Coat. Technol.

2. Protective Coatings in the Gas Turbine Engine;DeMasi-Marcin;Surf. Coat. Technol.

3. Investigation of High-Pressure Compressor Blade Failures in LM6000 Sprint Engines;Swaminathan

4. The Wear and Erosion Resistance of Hard PVD Coatings;Rickerby;Surf. Coat. Technol.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3