Interval Predictor Models With a Linear Parameter Dependency

Author:

Crespo Luis G.1,Kenny Sean P.2,Giesy Daniel P.2

Affiliation:

1. Dynamic Systems and Control Branch, NASA Langley Research Center, Hampton, VA 23681 e-mail:

2. Dynamic Systems and Control Branch, NASA Langley Research Center, Hampton, VA 23681

Abstract

This paper develops techniques for constructing metamodels that predict the range of an output variable given input–output data. We focus on models depending linearly on the parameters and arbitrarily on the input. This structure enables to rigorously characterize the range of the predicted output and the uncertainty in the model’s parameters. Strategies for calculating optimal interval predictor models (IPMs) that are insensitive to outliers are proposed. The models are optimal in the sense that they yield an interval valued function of minimal spread containing all (or, depending on the formulation, most) of the observations. Outliers are identified as the IPM is calculated by evaluating the extent by which their inclusion into the dataset degrades the tightness of the prediction. When the data generating mechanism (DGM) is stationary, the data are independent, and the optimization program (OP) used for calculating the IPM is convex (or when its solution coincides with the solution to an auxiliary convex program); the model’s reliability, which is the probability that a future observation would fall within the predicted range, is bounded tightly using scenario optimization theory. In contrast to most alternative techniques, this framework does not require making any assumptions on the underlying structure of the DGM.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3