Turbulent Flow of Dilute Aqueous Polymer Solutions

Author:

Goren Y.1,Norbury J. F.2

Affiliation:

1. Marine Operations, Santa Fe Drilling Co., Santa Fe Springs, Calif.

2. University of Liverpool, Liverpool, England

Abstract

This paper summarizes some of the research into the effect of polymer additives on turbulent shear flow, which was conducted at the University of Liverpool between October, 1964, and October, 1966. The paper contains a brief description of the research together with a summary of the principal results and conclusions. The present work was devoted to a detailed examination of the mechanism of a particular flow by gathering information on friction drag, velocity distribution, concentration distribution, and correlation with Reynolds number and polymer concentration level. The particular flow chosen was the fully developed turbulent flow in a 2-in-dia pipe of Polyox WSR-301 solutions. A maximum drag reduction of 71 percent was obtained at a Reynolds number of 1.5 × 105 for solutions having polymer concentration of 10 weight parts per million. The drag reduction effect occurred only above some “critical” Reynolds number which was independent of concentration. The polymer additives were found to influence the flow in the neighborhood of a solid boundary. In this zone of the flow, the eddy viscosity was found to be much lower than that of water. In the absence of a boundary, as in free jet flow, the polymer additives had no effect on the flow characteristics. The experiments showed for the first time that the polymer molecules were uniformly distributed across the pipe diameter under all turbulent flow conditions investigated. A method of determining polymer concentration was devised for this purpose.

Publisher

ASME International

Subject

General Medicine

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating polymer drag reduction using a modified mixing length in zero pressure gradient;Transactions of the Canadian Society for Mechanical Engineering;2023-12-01

2. Biomass-based polymers as effective drag-reducing agents in turbulent flow;Biomass Conversion and Biorefinery;2022-01-11

3. Direct numerical simulations of turbulent viscoelastic jets;Journal of Fluid Mechanics;2020-07-20

4. Drag reduction studies in water using polymers and their combinations;Materials Today: Proceedings;2020

5. Drag Reducing Agents: A Historical Perspective;Rheology of Drag Reducing Fluids;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3