Affiliation:
1. Japan Nuclear Energy Safety Organization
2. Mitsubishi Heavy Industries, Ltd.
Abstract
The fatigue life in elevated temperature water is strongly affected by water chemistry, temperature and strain rate. The effects of these parameters on fatigue life reduction have been investigated experimentally. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. As a part of the EFT (Environmental Fatigue Tests) project, the study was conducted in order to evaluate the applicability of the modified rate approach to the case where temperature and strain rate varied simultaneously. It was reported in the previous papers (1,2) that the accuracy of modified rate approach is about factor of 2. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm applicability of modified rate approach method together with cumulative usage factor, tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which temperature changes in response to strain change in a simulated PWR environment.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献