Vibration Reduction of Large Unbalanced Rotor Supported by Externally Pressurized Gas Journal Bearings With Asymmetrically Arranged Gas Supply Holes (Verification of the Effectiveness of a Supply Gas Pressure Control System)

Author:

Ise Tomohiko1,Osaki Mitsuyoshi2,Matsubara Masami2,Kawamura Shozo3

Affiliation:

1. Mem. ASME Faculty of Science and Engineering, Department of Mechanical Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan e-mail:

2. Department of Mechanical Engineering, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan e-mail:

3. Professor Department of Mechanical Engineering, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan e-mail:

Abstract

A rotor supported by gas bearings vibrates within the clearance. If the static imbalance of the rotor is large, even if the rotation speed is low, large amplitude vibration is generated by the centrifugal force. This is a serious problem because the risk of bearing damage increases. In order to solve this problem, an externally pressurized gas journal bearing with asymmetrically arranged gas supply holes has been developed. This type of bearing has a large load capacity as compared with the conventional symmetric gas supply bearing because pressurized gases are supplied to the loaded and counter-loaded side bearing surfaces via asymmetrically arranged gas supply holes. The bearing has a new gas supply mechanism in which gas is supplied from the rotor through inherent orifices. The characteristics of the developed bearing are beneficial from the viewpoint of using the bearing in rotational-type vibration exciters. In other words, this rotor has a large static imbalance. Numerical calculations of the characteristics of this bearing were performed, and the resulting characteristics were compared with those of a conventional symmetric gas supply journal bearing. The bearing load capacity of the developed bearing is considerably larger than that of conventional symmetric type bearings. The load capacity increases owing to the asymmetry of the gas supply holes. In the controlled gas supply pressure condition, rotor radial vibration during rotation can theoretically be zero. A test rig and gas control system to realize vibration reduction was constructed. A rotational test under the gas pressure control condition was conducted using a large unbalanced rotor taking advantage of this property. The control program was constructed using matlab and simulink. The devices were driven by a digital signal processor. The magnitude of the unbalance of the rotor is 13.5 × 10−3 kg m. The bearing diameter and length were 60 and 120 mm, respectively. The rotational vibration amplitude decreased at a high rotational frequency under the proposed bearing configuration, although the amplitude increases monotonically with the frequency in the conventional bearing. When the gas supply pressure was controlled synchronously with the rotation frequency modulation of the large unbalanced rotor, the amplitude of the vibration amplitude was greatly reduced. The rotor of the test rig was safely supported by this bearing, and effective data for practical operation were obtained.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Relief Hole on the Static Characteristics of Externally Pressurized Steam-Lubricated Hybrid Journal-Thrust Bearing;Proceedings of the 11th IFToMM International Conference on Rotordynamics;2023-08-27

2. The Air Lubrication Behavior of a Kingsbury Thrust Bearing Demonstration;International Journal of Rotating Machinery;2021-02-27

3. Control and prediction protocol for bearing failure through spectral power density;Eksploatacja i Niezawodnosc - Maintenance and Reliability;2020-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3