Verification of Alternative Criteria for Shakedown Evaluation Using Flat Head Vessel

Author:

Asada Seiji1,Yamashita Norimichi2,Okamoto Asao3,Nishiguchi Isoharu4

Affiliation:

1. Mitsubishi Heavy Industries, Ltd., Kobe, Hyogo, Japan

2. Tokyo Electric Power Company, Tokyo, Japan

3. Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama, Kanagawa, Japan

4. Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan

Abstract

Alternative stress evaluation criteria suitable for Finite Element Analysis (FEA) proposed by Okamoto et al. [1] have been studied by the Committee on Three Dimensional Finite Element Stress Evaluation (C-TDF) in Japan. Thermal stress ratchet criteria in plastic FEA are now under consideration. Two criteria are proposed: evaluating variations in plastic strain increments and evaluating variations in the elastic core region. To verify the validity of these criteria, calculations were performed for several typical models in C-TDF [2]. This paper shows calculations and evaluation results of a Flat Head Vessel for shakedown. To study shakedown criteria for gross structural discontinuity, a flat head vessel is surveyed. The flat head vessel consists of a stiff flat head and a shell and is subjected internal pressure and thermal cycle. The elastic shakedown area and the plastic area are compared and plastic strain increments are surveyed. A shakedown evaluation method based on distribution of elastic-plastic strain range is proposed.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3