Gait Phase-Based Control for a Rotary Series Elastic Actuator Assisting the Knee Joint

Author:

Bae Joonbum1,Kong Kyoungchul2,Tomizuka Masayoshi1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720 e-mail:

2. Department of Mechanical Engineering, Sogang University, Seoul, Korea 121-742 e-mail:

Abstract

Actuators for physical human-robot interaction (pHRI) such as rehabilitation or assistive systems should generate the desired torque precisely. However, the resistive and inertia loads inherent in the actuators (e.g., friction, damping, and inertia) set challenges in the control of actuators in a force/torque mode. The resistive factors include nonlinear effects and should be considered in the controller design to generate the desired force accurately. Moreover, the uncertainties in the plant dynamics make the precise torque control difficult. In this paper, nonlinear control algorithms are exploited for a rotary series elastic actuator to generate the desired torque precisely in the presence of nonlinear resistive factors and modeling uncertainty. The sliding mode control smoothed by a boundary layer is applied to enhance the robustness for the modeling uncertainty without chattering phenomenon. In this paper, the rotary series elastic actuator (RSEA) is installed on the knee joint of an orthosis, and the thickness of the boundary layer is changed by gait phases in order to minimize the torque error without the chattering phenomenon. The performance of the proposed controller is verified by experiments with actual walking motions.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference12 articles.

1. Series Elasticity and Actuator Power Output;Paluska

2. Series Elastic Actuators for High Fidelity Force Control;Pratt;Industrial Robot: An International Journal

3. Series Elastic Actuators;Pratt

4. Series Elastic Actuator Development for a Biomimetic Walking Robot;Robinson

5. Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications;Kong;IEEE/ASME Trans. Mechatron.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3