Temperature Dependence of the Mechanical Properties of GaAs Wafers

Author:

Hu Jun Ming1,Pecht Michael1

Affiliation:

1. CALCE Center For Electronic Packaging, University of Maryland, College Park, MD 20742

Abstract

GaAs is known to have superior electronic properties and greater photovoltaic conversion efficiency compared to elemental semiconductors such as silicon and germaniumn. Mechanical properties of GaAs at different temperatures are now necessary to incorporate into the design models for the GaAs die attach and substrate architecture for microelectronic packages. These properties are also required to aid in defining reliability and screening specifications. This paper presents the experiment results on various material properties of GaAs wafer over the temperature range of − 75°C to 200°C. Material properties determined from testing include the modulus of elasticity, the modulus of rupture, the critical value of stress intensity factor, and the coefficient of thermal expansion. The importance of fracture assessment in semiconductor devices is also discussed.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epoxy Mold Compound Characterization for Modeling Packaging Reliability;2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2022-04-25

2. Modeling and Experimental Study of the Kink Formation Process in Wire Bonding;IEEE Transactions on Semiconductor Manufacturing;2014-02

3. Optimization of wire connections design for power electronics;Microelectronics Reliability;2011-09

4. Investigation of the heel crack mechanism in Al connections for power electronics modules;Microelectronics Reliability;2011-05

5. Chip-on-Board (CoB) technology for low temperature environments. Part I: Wire profile modeling in unencapsulated chips;Microelectronics Reliability;2007-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3